
Journal of Sound and Vibration (1998) 217(4), 637–652
Article No. sv981746

EXACT CONTROLLABILITY OF A LINEAR
EULER–BERNOULLI PANEL

G. C. G  S. K. B

S. N. Bose National Centre for Basic Sciences, JD Block, Sector III,
Salt Lake City, Calcutta 700091, India

(Received 1 June 1997, and in final form 23 March 1998)

The problem of control of flexural vibrations of a flexible space structure (such
as solar cell array) modelled by a thin uniform rectangular panel is considered
here. The flexural vibrations of such a panel satisfies the one dimensional fourth
order Petrowsky equation or Euler–Bernoulli equation. The panel is held at one
end by a rigid hub and the other end is free. By attaching the hub to one side
of the panel the dynamics creates a non-standard hybrid system of equations. It
is shown that the vibrations of the overall system can be driven to rest by means
of an active boundary control force applied on the rigid hub only. Also an estimate
of the minimum time of control is obtained. A closed form approximate result is
constructed by Galerkin’s residual technique to support and implement the
method.
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1. INTRODUCTION

Recently, studies in vibration control of mechanical systems have developed
significantly. The three most common classes of vibration control are of passive,
active, and of the hybrid type. Passive vibration control uses resistive devices that
disturb vibration or absorb vibration energy. Active vibration control is similar,
but involves the use of force actuators linked with external energy. Hybrid
vibration control is a combination of passive approach with an active control. The
vibrations of flexible (space) structures is a problem of dynamical system theory
governed by partial differential equations. The dynamical behavior of many
practical systems consist of two parts: coupled elastic part and rigid part,
constituting the class of hybrid systems, such as solar cell arrays, space craft with
flexible attachments or robots with flexible links. For such systems generally, the
situation arises where it is very difficult to apply the control force on the free end
of the elastic part to obtain a good performance of the overall system where as,
application is very easy on the rigid part. These problems are very significant
mathematically. A common approach in engineering is to decompose the
vibrations into normal modes and retain the first few modes to reduce the problem
to a finite dimensional state space representation (cf. [1–3]). In the literature, exact
controllability of a system is stated as follows: Let a system be disturbed from some
initial state; find a suitable control function which drives the system to rest or to
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some desired state at finite time Tq 0. For studying exact controllability, a
rigorous method, the ‘‘Hilbert Uniqueness Method’’ (HUM), which avoids normal
modes altogether, has been introduced by Lions [4] for distributed systems
governed by second order wave equations and the fourth order Petrowsky
equation with standard (Dirichlet or Neumann) boundary conditions. Consider-
able mathematical literature exists on the subject.

The question of exact controllability of the Euler–Bernoulli beam clamped at
one end, with boundary control at the free end has been studied theoretically by
Littman and Markus [5]. The idea was extended by Markus and You [6] to obtain
an approximate control system. The problem of controllability and stability for
serially connected beams with actuators and sensors co-located at nodal points has
been discussed by Chen et al. [7]. Morgül [8] treated the case of controllability of
Euler–Bernoulli beams using the energy functional of the system. Nagaya [9]
studied the problems of vibration control of flexible beams to cancel resonances
subject to forced vibrations by applying the inertia force cancellation method.
Chen et al. [10] established the stabilisation property of a coupled vibrator. In
order to make it stable, a point stabiliser is installed in the middle of the span.
All of these investigations have shown the ability to control and stabilise the
vibrations of an elastic beam whose behavior is modelled by the Euler–Bernoulli
equation, clamped at one end and free at the other end, except for feedback
damping and control forces or torques, applied on the free end.

Here, the exact controllability problem of transverse vibrations of a (large)
simple flexible space structure is studied, mathematically modelled by a
one-dimensional fourth order Petrowsky equation or in this case the
Euler–Bernoulli equation. It may however be mentioned that varieties of
structures exist in practice with mechanical damping and possibly non-linear
characteristics. Flexible space structures are usually hoisted at one end by a rigid
hub which is assumed here to be capable of motion in the transverse direction.
Installation of the movable hub at one end of the panel leads to a non-standard
hybrid system. By applying an active control force on the hub, the vibrations of
the system can be suppressed exactly when the motion is set from a given initial
displacement and velocity along the length of the panel. That this is possible at
time TqT0 = (4l2/p)zm/D where m, l, D are defined in section 2, is proved here
theoretically by HUM.

The mathematical formulation for the active vibration control problem is
described in section 2. Subsequently, in section 3, the systematic method for
exactly controlling vibrations of the overall system is discussed. In section 4, an
approximate closed form solution together with approximate boundary control is
obtained by Galerkin’s residual technique. Finally conclusions are drawn in
section 5 which summarise practical aspects of the problem.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Referring to the schematic Figure 1, the simplest type of structure consisting of
a uniform rectangular flexible panel of unit width and length l, with a rigid hub
of mass mh at one end, the other end being totally free is considered. Ones objective
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Figure 1. Schematic of the rigid hub and the panel.

is to control the vibrations of the panel exactly by applying suitable control force
Q(t) only on the rigid hub, in some finite time interval [0, T], when it is initially
set in motion. If yh (t) be the transverse displacement of the rigid hub and yp (x, t)
that of the panel at the position x along the span of the panel relative to the hub
at time t, then the total transverse deflection can be written as

y(x, t)= yh (t)+ yp (x, t), 0E xE l, 0E tET. (1)

By assuming that the vibrations undergo only small deformations, =y(x, t)=�l and
=(1y/1x)(x, t)=�1, and neglecting the gravitational effect and rotatory inertia of the
panel cross-sections, y(x, t) satisfies the fourth order Petrowsky equation

m(12y/1t2)(x, t)+D(14y/1x4)(x, t)=0, 0E xE l, 0E tET. (2)

where D= 1
12Eh3(1− n2)−1. The constants D, E, n, m and h are the flexural rigidity,

the Young’s modulus, the Poisson’s ratio, the mass per unit length and the
thickness of the panel respectively.

At the hub end x=0 where the control force Q(t) is applied, the hub dynamics
yields the differential equation

mh (12yh /1t2)(t)+D(13yp /1x3)(0, t)+Q(t)=0.

Since yp (0, t)=0, y(0, t)= yh (t) and hence the above equation becomes

(13y/1x3)(0, t)+ a(12y/1t2)(0, t)+ lQ(t)=0, 0E tET, (3)

where a=mh /D and l=1/D. Assuming at x=0, there will be no rotational
deflection of the panel relative to the hub (i.e., the hub is built into the panel at
x=0), (1yp /1x)(0, t)=0, implying

(1y/1x)(0, t)=0, 0E tET. (4)

Since the panel is assumed to be free at x= l, at this end

(12y/1x2)(l, t)=0, (13y/1x3)(l, t)=0, 0E tET. (5)

Let the panel initially vibrate with arbitrary initial values

y(x, 0)= y0(x), (1y/1t)(x, 0)= y1(x), 0E xE l, (6)

satisfying the corresponding homogeneous boundary conditions (3–5). Therefore,
to suppress vibrations of the panel as described above, a suitable control Q(t) must
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be selected and the initial boundary value problem defined in equations (2–6)
satisfied.

3. EXACT CONTROLLABILITY

To study the exact controllability at some finite time Tq 0, the present aim is
to find Q(t) appropriately such that it drives the system (2–6) to rest at time t=T.
Then the solution of system (2–6) must satisfy the desired final state

y(x, T)=0, (1y/1t)(x, T)=0. (7)

Following exact controllability theory, Q(t) is selected proportional to u(0, t)
say,

Q(t)= b0u(0, t) (8)

where u(x, t) is the solution of corresponding adjoint system of (2–6):

m(12u/1t2)(x, t)+D(14u/1x4)(x, t)=0, 0E xE l, 0E tET,

u(x, 0)= u0(x), (1u/1t)(x, 0)= u1(x), 0E xE l, (9)

(13u/1x3)(0, t)+ a(12u/1t2)(0, t)=0, (1u/1x)(0, t)=0, 0E tET,

(12u/1x2)(l, t)=0, (13u/1x3)(l, t)=0, 0E tET, (10)

under the assumptions u0(0)=0, u1(0)=0 and b0 being an arbitrary positive
constant independent of t. As the action of the control force Q(t) in (8) depends
on the solution of the adjoint system (9), the suppression of vibration at time T
(exact control) entails coupling of these two systems. In this context, one should
note that the adjoint system (8) is energy conserving (see Appendix), while the
original system decays during the control process.

Now for given {u0, u1} (though unknown till now), in a suitable Hilbert space
(see Lions and Magenes [11]) the system (9) has a unique solution u(x, t) for
0E xE l, 0E tET. On the other hand, marching backward in time the system
(2–5) and (7) must have a solution y(x, t) depending on the initial values {u0, u1}
of (9), since u(0, t) explicitly occurs in Q(t) of the boundary condition (3). To
obtain Q(t), the major task is to find the initial states {u0, u1}, so that one can first
acquire the solution u(x, t) of (9). Supposing that one knows the values of {u0, u1},
the solution y(x, t) can be obtained for the backward system (2–5) and (7). Hence
one can then easily obtain {y0, y1} as defined in (6). In other words, there is a
mapping L from the set of values {u0, u1} into {y0, y1} which eventually can be
written uniquely as

L{u0, u1}= {y1, −y0}. (11)

It can be shown following Lions [4], that L is an isomorphism for TqT0 (see
Appendix), where T0 = (4l2/p)zm/D being the estimated least time to control.
Therefore one can uniquely invert L from (11) to find {u0, u1} for given {y0, y1}
in some appropriate Hilbert space. Consequently the solution u(x, t) of (9) can be
found and hence the control Q(t) by (8). Knowing Q(t) one is then able to solve
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the backward system (2–5) and (7), and ultimately the exact controllability result
immediately follows from (7).

An interpretation of T0 is as follows. The frequency of vibrations of a uniform
panel (or bar) fixed (clamped) at x=0 and free at x= l is (1/2pl2)z(D/m)p2,
where p is a root of the equation (cf. [13])

cos p cosh p+1=0. (12)

The roots of (12) are approximately given by p1 =1·875, p2 =4·694 etc. If t be
the time period of the first (gravest) mode of vibration then t=(2pl2/p2

1 )zm/D.
Therefore T0/t=2p2

1 /p2 =0·71 (approximately). Hence T0 is somewhat less than
t. The deflation in time period may be ascribed to the compliant motion of the
end x=0 towards the equilibrium position y=0.

4. SPACE-TIME GALERKIN APPROXIMATION

In this section a closed form approximation of the vibration control system (2–6)
is constructed. One proceeds by constructing an admissible approximate
displacement function as well as the approximate boundary control force that
satisfy the final conditions (7) as closely as possible. The present approach is on
the basis of Galerkin’s weighted residual method [cf. 14]. For this it is convenient
to treat the above boundary value problem in two steps.

In the first step, the approximate displacement for the system (2–6) is written
as a superposition of polynomial shape functions of the following type:

y(x, t)= s
n+1

i=1

fi (x)fi (t), 0E xE l, 0E tET, (13)

where

fi = s
p+1

j=1

ai
j0xl1

j−1

satisfy the homogeneous boundary conditions corresponding to equations (3–5)
for i=1, 2, . . . , n, while fn+1 satisfies the non-homogeneous boundary conditions
(3–5). The coefficient functions fi (t) for i=1, 2, . . . , n are to be determined for
finding the approximate solution of the system (2–6) by the Galerkin technique,
while fn+1(t) on account of (3) is given by

fn+1(t)=−l3[a(12y/1t2)(0, t)+ lQ(t)]. (14)

In practical procedure, one may assume that y0(x) and y1(x) are approximated
by suitable polynomials (by measurement at suitable discrete points along the
length of the panel) satisfying the corresponding homogeneous boundary
conditions (3–5). The functions thus become candidates for fi and one can assume

f1(x)= y0(x), f2(x)= y1(x). (15)
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In addition to these, another function f3(x) can be taken which is a simple
monotonic function, since with increasing time the equilibrium position y=0 is
approached. Thus

f3(x)= x2/l2 − 1
2x

4/l4 + 1
5x

5/l5. (16)

The last function f4(x) (with n=3) is similarly taken as

f4(x)=−1
4x

2/l2 + 1
6x

3/l3 − 1
24x

4/l4. (17)

With the above remarks, substituting (13) into the vibration equation (2), the
integral of the weighted residue (with weight fi ) over [0, l] set equal to zero:

g
l

0

fi (x)(m 12/1t2 +D 14/1x4) s
n+1

j=1

fj (x)fj (t) dx=0, (i=1, 2, . . . , n),

yields the matrix equation

AC� +BC+B(F0 + tF1)+EC
....

= l[CQ� (t)+DQ(t)]. (18)

Similarly, the initial conditions (6) reduce to

C(0)=0, C� (0)=0, (19)

where

F(t)=C(t)+F0 + tF1, (20)

and ( � ) represents the time derivative. The square matrices A, B, E and the column
vectors F, C, F0, F1, C, D are defined as

A=$ml s
p+1

k=1

s
p+1

s=1

ai
kaj

s

s+ k−1

−aaj
1D s

p+1

k=1

s
p+1

s=5

ai
kan+1

s
(s−1)(s−2)(s−3)(s−4)

s+ k−5 %n× n

,

B=$Dl3 s
p+1

k=1

s
p+1

s=5

ai
kaj

s
(s−1)(s−2)(s−3)(s−4)

s+ k−5 %n× n

,

E=$−ml4aaj
1 s

p+1

k=1

s
p+1

s=1

ai
kan+1

s

s+ k−1%n× n

,

C=$ml4 s
p+1

k=1

s
p+1

s=1

ai
ka1

s

s+ k−1%n×1

,

D=$D s
p+1

k=1

s
p+1

s=5

ai
ka1

s
(s−1)(s−2)(s−3)(s−4)

s+ k−5 %n×1

,

F=F(t)= [fi (t)]n×1, C=C(t)= [ci (t)]n×1,

F0 = [fi (0)]n×1, F1 = [f� i (0)]n×1. (21)
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In the next step, the Galerkin’s weighted residual is repeated in the time domain
for the system (18) with homogeneous initial conditions (19). As a tool, the
approximation of C(t) is written as

C(t)= s
m*

k=1

Xk0 t
T1

k+1

, (22)

where each Xk (k=1, 2, . . . , m) is an n×1 column vector. The determination of
Xk yields the approximate solution C(t) of (22) and hence that of F(t) from (20).
Proceeding as in the previous step, one obtains

s
m

k=1

MlkXk =−jlBF0 − hlBF1 +Hl , l=1, 2, . . . , m*, (23)

where

Mlk =$ (k+1)k
T(k+ l+1)

A+
T

k+ l+3
B+

(k+1)k(k−1)(k−2)
T3(k+ l−1)

E%,
jl =

T
l+2

, hl =
T2

l+3
, Hl = l g

T

0

[CQ� (t)+DQ(t)]0 t
T1

l+1

dt. (24)

To solve Xk from (23), the matrix M=[Mlk ] has to be inverted. By supposing that
M is non-singular and F=[Fkl ] the inverse of M, then from (23) one has the
scheme

Xk =− s
m

l=1

FkljlBF0 − s
m

l=1

FklhlBF1 + s
m

l=1

FklHl , k=1, 2, . . . , m*. (25)

To obtain control force Q(t), one now solves the adjoint system (9) by a similar
Galerkin residual technique. This leads to the scheme

Yk =− s
m

l=1

FkljlBU0 − s
m

l=1

FklhlBU1, k=1, 2, . . . , m*, (26)

where the vectors Yk are corresponding to Xk (k=1, 2, . . . , m*) in the form (22)
and the vectors U0 = [ui (0)]n×1, U1 = [u� i (0)]n×1 corresponding to F0, F1 in (20), for
the adjoint system (9). Knowing U0 and U1 one can easily obtain Yk from (26).
But the control force Q(t) following (13), (20) and (22), is taken as

Q(t)= b0u(0, t)= b0I1U(t)= b0I10 s
m

k=1

Yk0 t
T1

k+1

+U0 + tU11, (27)
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U(t) being the corresponding term of F(t) in the adjoint system and
I1 = [1, 0, 0, . . . , 0]1× n . Since the Yk’s are dependent on U0, U1 in (26), it follows
that U0, U1 will explicitly occur in Q(t). Now substituting Q(t) from (27) into Hl

in (24), one obtains Hl in terms of U0 and U1 which then helps to obtain Xk from
(25), in terms of U0, U1, F0, F1. But by the Galerkin technique, the conditions
y(x, T)=0, (1y/1t)(x, T)=0 yield

A*F(T)=$a s
n

i=1

ai
1f� i (T)+ lQ(T)%C*,

A*F� (T)=$a s
n

i=1

ai
1f	 i (T)+ lQ� (T)%C*, (28)

where A* corresponds to A in (24) without the second term and the factor m.
Similarly C* corresponds to C without the factor m. With the help of the relations
(25–27), (28) ultimately leads to the matrix equations of the form

PU0 +QU1 =RF0 +SF1, UU0 +VU1 =WF0 +ZF1, (29)

where the entries of all n× n square matrices P, Q, R, S, U, V, W, Z depend on
the entries of A, B, C, D, E, F. Solving U0 and U1 from (29), with the help of initial
conditions of the control problem, the vectors Yk can be obtained from the
equation (26) and subsequently the approximate control force Q(t) from (27) to
compute Hl from (24) and then Xk from (25). Hence from (22), C(t) can be
obtained which finally gives the approximate shape function (13). Since the scheme
is direct and low values of n and m* are normally needed, computation proceeds
very quickly.

The model parameters for numerical computation for the control problem are
chosen as follows (in MKS units): length of the panel l=3·6 m, mass per unit
length of the panel m=5·9 kg/m, Poisson ratio n=0·33, rigidity D=6·9 kg m3/s2,
mass of the hub mh =12·2 kg.

For this panel T0 =15·26 s. Two examples of initial conditions are considered.
In the first

y0(x)=−
1

200
+

x2

l2
−15

x4

l4
+

67
2

x5

l5
−27

x6

l6
+

53
7

x7

l7
, y1(x)=0, (30)

in which y0(x) has a wavy shape and in the second,

y0(x)=
1

100 01+
x2

l2
+2

x4

l4
−

14
5

x5

l5
+

x6

l61, y1(x)=
1
5 0x4

l4
−

6
5

x5

l5
+

2
5

x6

l61, (31)

where a monotonic velocity is imparted with a small monotonic displacement.
Applying the above computational scheme with n=2, m*=4 and n=3, m*=3
respectively it is observed that the Galerkin approximation yields increasingly
better results for T higher than 15·26. The above results for the dynamic
deflection and the control force for the first example with T=20 s are presented
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Figure 2. The approximate deflections of the panel along the length with different time for T=20.
Numbers 1–11 respectively are the approximate positions of the panel at the times t=0, t=0·1T,
t=0·2T, t=0·3T, t=0·4T, t=0·5T, t=0·6T, t=0·7T, t=0·8T, t=0·9T, t=T.

in Figures 2 and 3, while those for the second example with T=30 s are presented
in Figures 4 and 5 respectively. The velocities are lower by an order of magnitude
and are not drawn. Finally, one observes that for very accurate results, even for
low values of T (higher than T0), one may need a full, space-time Galerkin finite
element technique. Such a technique will however need greater computational
time.

5. CONCLUSIONS

The exact controllability of transverse vibrations of a flexible panel attached to
a rigid hub at one end and free at the other has been established. The authors have
shown that by applying a suitable boundary control at the hub end only, one can
exactly control the panel vibrations following prescribed initial displacement and
velocity, without applying constraints at the free end. In this context, the minimum
time T0 of controllability for which the result is valid has also been estimated. The
results are also valid for an Euler–Bernoulli beam held by a rigid hub at one end.
In this case EI, the flexural rigidity of the beam replaces D of the panel. The
analytical treatment of the problem is supported by closed form fast numerical
result obtained by Galerkin’s residual technique. The basic principle of exact
controllability as treated herein is the Hilbert Uniqueness Method (HUM) due to
Lions [4]. Explicit details of the method including various types of problems such
as the wave equation, Petrowsky equation with standard Dirichlet or Neumann
boundary conditions, have been discussed.
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Figure 3. The approximate response of the control with time for T=20. Note that application
and removal of the control force at initial and final times is sudden.

Figure 4. The approximate deflections of the panel along the length with different time for T=30.
Numbers 1–6 respectively are the approximate positions of the panel at the times t=0, t=0·2T,
t=0·4T, t=0·6T, t=0·8T, t=T.
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Figure 5. The approximate response of the control force with time for T=30. Note that
application and removal of the control force at initial and final times is sudden.

Since the theory is exact, the parameter involved should be known as accurately
as possible. The initial displacement and velocity y0(x) and y1(x) when sufficiently
smooth need be measured at a limited number of points along the length of the
panel and approximated by polynomial functions.

Of the other parameters required in the theory D may be determined from some
dynamical test, while m, mh and l can be ascertained quite accurately. Nevertheless,
approximations and uncertainties in measurements do pose the question of
robustness of the exact theory and may need to be addressed theoretically. One
may however note that dissipation of energy takes place in actual systems with
significant material damping in the panel, and frictional and other losses in the
hub rendering the system asymptotically stable. Preliminary investigations have
shown that while T0 increases slightly due to the former, damping proportional
to velocity of the latter induces strong stability (cf. Gorain and Bose [15]). The
level of performances should thus be good under these circumstances. In the earlier
literature (cf. [1–3]) using modal decomposition followed by finite state
representation, one notes that uncertainties are introduced as Gaussian white noise
followed by Kalman filtering.

The dynamic behaviour of many other practical systems such as space craft with
flexible attachments, robots with flexible links and certain parts of many
mechanical systems obey more complicated hybrid systems of equations. For such
systems the situation generally occurs when it is very difficult or undesirable to
apply boundary control at the free end and where a good performance is needed
from the whole system. The authors discussion in this paper has covered these
types of active vibration control problems and produced an appropriate exact
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controllability of the overall system.For other such systems, one canproduce similar
exact controllability systems followed by corresponding control.
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APPENDIX

A1.    

In association with each solution of (9), the total energy E(t) at time t is defined
by

E(t)= 1
2 g

l

0 $m01u

1t1
2

+D012u

1x21
2

% dx+ 1
2mh$1u

1t
(0, t)%

2

. (A.1)

Differentiating with respect to t and replacing m 12u/1t2 by −D 14u/1x4, (32) then
leads to

dE
dt

=D g
l

0

1

1x 0 12u

1t 1x
12u

1x2 −
1u

1t
13u

1x31 dx+mh
1u

1t
(0, t)

12u

1t2 (0, t).

Integrating by parts and applying the boundary conditions of (9), one obtains
dE/dt=0 which implies

E(t)= constant=E(0) for te 0. (A.2)

where

E(0)= 1
2 g

l

0 $m01u

1t
(x, 0)1

2

+D012u

1x2 (x, 0)1
2

% dx, (A.3)

by (10). Thus the adjoint system is energy conserving.

A2.   T0

By multiplying the first equation of (9) by (l− x) 1u/1x and integrating by parts
over [0, l]× [0, T], and using the boundary conditions of (9):

m g
l

0 $(l− x)
1u

1x
1u

1t%
T

0

dx− 1
2 g

l

0 g
T

0

(l− x)
1

1x $m01u

1t1
2

+D012u

1x21
2

% dx dt

+D g
l

0 g
T

0

1u

1x
13u

1x3 dx dt=0

leads to

l
2 g

T

0 $m01u

1t
(0, t)1

2

+D012u

1x2 (0, t)1
2

% dt

e1
2 g

l

0 g
T

0 $m01u

1t1
2

+D012u

1x21
2

% dt−m g
l

0 $(l− x)
1u

1x
1u

1t%
T

0

dx. (A.4)
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Since 1u/1x(0, t)=0, from Wirtinger’s inequality (cf. [16]), one can write

g
l

0 01u

1x1
2

dxE 4l2

p2 g
l

0 01
2u

1x21
2

dx. (A.5)

On the other hand, if one sets X=m fl
0 (l− x) 1u/1x 1u/1t dx then one notes that

by inequality (A.5) and energy equation (A.1),

=X=Em g
l

0

=l− x=b 1u

1x b b 1u

1t b dx

E l2

pXm
D g

l

0 $m01u

1t1
2

+D
p2

4l2 01u

1x1
2

% dxE 2l2

p Xm
D

E(t).

By conservation of energy (A.1)

=X=T0 E 2l2

p Xm
D

[E(T)+E(0)]=
4l2

p Xm
D

E(0). (A.6)

Introducing (A.1) and (A.6) into (A.4), one has therefore

1
2(ml+mh ) g

T

0 01u

1t
(0, t)1

2

dt+
Dl
2 g

T

0 01
2u

1x2 (0, t)1
2

dte0T−
4l2

p Xm
D1E(0).

(A.7)

Again by Wirtinger’s inequality, one can write

g
T

0

u2(0, t) dtE 4T2

p2 g
T

0 01u

1t
(0, t)1

2

dt. (A.8)

Therefore, if one defines a positive function K(T) by

K(T)=
fT
0 u2(0, t) dt

1
2(ml+mh ) fT

0 01u

1t
(0, t)1

2

dt+
Dl
2

fT
0 012u

1x2 (0, t)1
2

dt

, (A.9)

then by (A.9)

K(T)E
fT
0 u2(0, t) dt

1
2(ml+mh ) fT

0 01u

1t
(0, t)1

2

dt

E 8T2

p2(ml+mh )
, (A.10)
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which is bounded above for all finite T. Therefore, it follows from (A.7) and (A.9)
that

g
T

0

u2(0, t) dteK(T)(T−T0)E(0), (A.11)

where

T0 = (4l2/p)zm/D. (A.12)

Again from energy equation (A.1), it follows easily with the help of (A.8), the
reverse inequality

g
T

0

u2(0, t) dtE 8T3

p2mh
E(0). (A.13)

Hence one has from (A.11) and (A.13),

8T3

p2mh
E(0)e g

T

0

u2(0, t) dteK(T)(T−T0)E(0). (A.14)

In mathematical literature, equation (A.11) provides an observability result for
positivity of the right side of equation (A.14). Thus the adjoint system is
observable for TqT0. Hence the vibrations of the original problem can be exactly
controlled for TqT0 (cf. [12]), where T0 is given by (43). Therefore the time T0

can be described as the estimated least time for exact controllability of this system.

A3.   L

By multiplying the first equation of (9) by y and (2) by u, integrating over
[0, l]× [0, T] and then subtracting:

m g
l

0 g
T

0

1

1t 01u

1t
y− u

1y
1t1 dx dt+D g

l

0 g
T

0

1

1x 013u

1x3 y− u
13y
1x31 dx dt

−D g
l

0 g
T

0

1

1x 012u

1x2

1y
1x

−
1u

1x
12y
1x21 dx dt=0.

Using the boundary, initial and final conditions of the two systems, a
straightforward calculation gives

m g
l

0

(u0y1 − u1y0) dx= b0 g
T

0

u2(0, t) dt−Da g
T

0 $1
2u

1t2 (0, t)y(0, t)

− u(0, t)
12y
1t2 (0, t)% dt
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which finally yields

g
l

0

(u0y1 − u1y0) dx=C g
T

0

u2(0, t) dt (A.15)

by (7) and (10), where C= b0/m. Hence according to Lions [4], the functional

{u0, u1}:�L{u0, u1}, {u0, u1}�

is obtained as

�L{u0, u1}, {u0, u1}�=g
l

0

(u0y1 − u1y0) dx=C g
T

0

u2(0, t) dt. (A.16)

By Poincaré inequality (cf. Aubin [17]), one knows that the norm

B 12u

1x2 B
2

L2[0,l]

=g
l

0 01
2u

1x21
2

dx

is equivalent to the norm of u in H2[0, l], where

H2[0, l]=6v = v$L2[0, l],
1v
1x

$L2[0, l],
12v
1x2$L2[0, l]7.

Inequality (A.14) implies that (A.16) defines a norm of {u0, u1} which is equivalent
to the norm on the Hilbert space F=H2[0, l]×L2[0, l] for TqT0. From the
inequality (A.11), one can use the Lax–Milgram theorem (cf. Aubin [17]) by virtue
of (A.16) to conclude that L is an isomorphism from F to F' for TqT0, F' being
the dual space of F. This proves the inversion of L.


